ent-(1aR)-1- α -(1a-Hydroxy-1a-phenyl)-3 β -hydroxy-11 α -bromo-12-oxo-2-norbeyeran-3 β -carboxylic Acid 2,1a-Lactone*

By Polly Sommerville and Michael Laing†

Chemistry Department, University of Natal, Durban 4001, South Africa

(Received 12 December 1977; accepted 7 January 1978)

Br O(1) O(2) O(3) O(12) C(1a)

C(1) C(2) C(3)

C(4)

C(5)

C(6)

C(7)

C(8) C(9)

C(10)

C(11)

C(12)

C(13) C(14)

C(15)

C(16)

C(17)

C(18) C(19)

C(20)

C(1')

C(2')

C(3') C(4')

C(5')

C(6')

Abstract. $C_{27}H_{33}BrO_4$, $M_r = 501$, orthorhombic, $P2_{1}2_{1}2_{1}$, $a = 21 \cdot 20$ (2), $b = 11 \cdot 42$ (1), $c = 9 \cdot 84$ (1) Å, V = 2382 Å³, $D_c = 1 \cdot 40$ g cm⁻³, Z = 4, μ (Mo K α) = $18 \cdot 7$ cm⁻¹. R = 0.07 for 1230 observed data: Br only anisotropic and 20 H atoms included. The phenyl on the nor-ring A/lactone system crowds the Br atom on ring C and the strain is relieved by angular distortions. The Br atom almost eclipses the C(12) keto O atom.

Introduction. When a mixture of the ketol (Ia) and benzaldehyde in aqueous ethanol is treated with dilute NaOH in the presence of O_2 , a lactone is obtained. Because chemical and spectroscopic methods could not determine unequivocally the configuration of the norring A/lactone system the crystal structure of the 11-bromo derivative (Ib) was determined (Laing, Pegel, Piacenza, Phillips & Waight, 1973).

Suitable crystals were prepared by Dr L. P. L. Piacenza. Data were collected from a crystal 0.3×0.4 \times 0.4 mm on a Philips four-circle diffractometer with graphite-monochromated Mo $K\alpha$ radiation (λ = 0.7107 Å) for θ between 3 and 20°. The ω -2 θ scan mode was used; the scan width was 1.0° , each peak being scanned for 50 s and the background for 50 s for each peak. Of the 1310 reflexions measured, 1230 were classed as observed, $I > 1.65\sigma(I)$. There reflexions were used as standards and their intensities remeasured every hour; no decomposition was detected. The intensities were corrected for Lorentz and polarization effects only. A temperature-sharpened Patterson map gave the coordinates of the Br atom. Subsequent Fourier maps yielded the coordinates of the lighter atoms. The structure was refined by block-diagonal least squares with the Br only anisotropic; 20 H atoms

were included in the structure factor calculations. The final R was 0.07 for 1230 observed data.[‡] A Hughes weighting scheme was used, with $4F_{min} = 60.0$. Weights were proportional to 1/F for $F > 4F_{min}$ and to F for $F < 4F_{min}$, with a proportionality factor such that the weight = 1 for $F = 4F_{min}$. Scattering factors for neutral atoms were used (*International Tables for X-ray Crystallography*, 1962); that of Br was corrected

Table 1. Fractional atomic coordinates $(\times 10^4)$ and isotropic thermal parameters

x	у	z	$B(\dot{A}^2)$
1161 (1)	1154 (1)	909 (1)	
1307 (5)	4189 (9)	4797 (10)	4.67 (25)
498 (6)	5154 (10)	5627 (13)	6.32 (29)
-229 (4)	3406 (8)	4496 (10)	3.63 (22)
2037 (5)	-853 (10)	737 (12)	5.51 (27)
1424 (6)	3107 (11)	3983 (14)	2.99 (28)
782 (6)	2488 (11)	3874 (14)	2.35 (28)
729 (7)	4195 (14)	5188 (17)	4.28 (37)
384 (6)	3122 (12)	4955 (14)	2.79 (30)
400 (7)	2306 (13)	6296 (15)	3.68 (33)
836 (6)	1326 (12)	5841 (15)	2.86 (28)
822 (7)	155 (12)	6625 (15)	3.33 (32)
1398 (7)	-507 (13)	6184 (15)	3.88 (33)
1414 (6)	-777 (11)	4623 (13)	2.52 (28)
1299 (6)	350 (11)	3737 (12)	2.15 (26)
778 (6)	1136 (12)	4284 (14)	2.59 (27)
1236 (8)	-96 (12)	2294 (14)	3.75 (31)
1769 (7)	-909 (13)	1860 (16)	3.45 (34)
1928 (7)	-1890 (13)	2821 (15)	3.47 (32)
2047 (6)	-1307 (12)	4202 (15)	3.36 (30)
959 (7)	-1826 (13)	4258 (17)	3.90 (36)
1270 (7)	-2554 (13)	3179 (15)	4.33 (34)
2446 (8)	-2665 (14)	2345 (17)	5.02 (37)
731 (8)	2939 (16)	7556 (19)	6.20 (43)
-282 (8)	1941 (16)	6742 (20)	6.02 (42)
86 (7)	693 (13)	3793 (16)	3.74 (34)
1767 (7)	3509 (12)	2732 (15)	3.34 (33)
1406 (7)	4116 (14)	1743 (17)	4.38 (37)
1761 (8)	4602 (15)	599 (18)	5.31 (42)
2371 (8)	4468 (15)	565 (18)	5.38 (40)
2726 (8)	3842 (17)	1464 (18)	5.32 (40)
2393 (8)	3367 (14)	2629 (18)	4.79 (39)

^{*} Diterpenoid C-Ring Bromoketones. IV.

[†] To whom correspondence should be addressed.

[‡] Lists of structure factors, anisotropic thermal parameters for Br and the fractional atomic coordinates of the H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33308 (9 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

/

Intramolecular bond le	engths (± 0)	0·02 Å)	
$\begin{array}{l} Br-C(11)\\ O(12)-C(12)\\ C(11)-C(12)\\ C(12)-C(13)\\ C(13)-C(14)\\ C(13)-C(17)\\ C(13)-C(14)\\ C(13)-C(16)\\ C(16)-C(15)\\ C(14)-C(8)\\ C(8)-C(15)\\ C(8)-C(9)\\ C(9)-C(11)\\ C(9)-C(10)\\ C(10)-C(5)\\ C(5)-C(6)\\ C(5)-C(6)\\ C(6)-C(7)\\ C(7)-C(8)\\ C(10)-C(20)\\ C(10)-C(1)\\ \end{array}$	1.98 1.24 1.52 1.49 1.63 1.50 1.53 1.50 1.53 1.58 1.57 1.51 1.52 1.55 1.54 1.50 1.57 1.63 1.60	C(1)-C(3) $C(3)-C(4)$ $C(4)-C(5)$ $C(4)-C(18)$ $C(4)-C(19)$ $C(1)-C(1a)$ $C(1a)-O(1)$ $O(1)-C(2)$ $C(2)-C(3)$ $C(2)-O(2)$ $C(3)-O(3)$ $C(1a)-C(1')$ $C(1')-C(2')$ $C(2')-C(3')$ $C(3')-C(4')$ $C(4')-C(5')$ $C(5')-C(6')$ $C(6')-C(1')$	1.54 1.62 1.52 1.60 1.57 1.54 1.49 1.28 1.45 1.28 1.41 1.50 1.42 1.46 1.30 1.36 1.45
Bond angles $(\pm 2^{\circ})$ Br-C(11)-C(9)	114	C(10) = C(1) = C(3)	106
$\begin{array}{l} Br-C(11)-C(12)\\ O(12)-C(12)-C(11)\\ O(12)-C(12)-C(13)\\ C(12)-C(12)-C(13)\\ C(12)-C(13)-C(13)\\ C(12)-C(13)-C(14)\\ C(12)-C(13)-C(16)\\ C(12)-C(13)-C(16)\\ C(13)-C(16)-C(15)\\ C(13)-C(16)-C(15)\\ C(13)-C(16)-C(15)\\ C(14)-C(8)-C(9)\\ C(14)-C(8)-C(15)\\ C(14)-C(13)-C(16)\\ C(14)-C(13)-C(16)\\ C(14)-C(13)-C(16)\\ C(14)-C(13)-C(16)\\ C(14)-C(13)-C(16)\\ C(15)-C(8)-C(9)\\ C(14)-C(13)-C(16)\\ C(15)-C(8)-C(10)\\ C(15)-C(8)-C(10)\\ C(9)-C(10)-C(5)\\ C(10)-C(9)-C(11)\\ C(20)-C(10)-C(5)\\ C(10)-C(5)-C(6)\\ C(5)-C(6)-C(7)\\ C(6)-C(7)-C(8)\\ C(7)-C(8)-C(14)\\ C(7)-C(8)-C(15)\\ C(10)-C(15)\\ $	108 124 120 114 116 106 114 107 115 106 108 109 915 108 114 105 114 105 114 105 114 105 114 103 114 103 114 112 106 114 112 118 103 114 112 106 114 112 106 111 111 111 96	C(10)-C(1)-C(1a) $C(1)-C(1)-C(1a)$ $C(1)-C(3)-C(4)$ $C(3)-C(4)-C(5)$ $C(4)-C(5)-C(6)$ $C(4)-C(5)-C(10)$ $C(4)-C(3)-O(3)$ $C(1)-C(3)-O(3)$ $C(1)-C(3)-O(3)$ $C(2)-C(3)-C(4)$ $C(3)-C(4)-C(18)$ $C(3)-C(4)-C(19)$ $C(18)-C(4)-C(19)$ $C(5)-C(4)-C(19)$ $C(5)-C(4)-C(19)$ $C(5)-C(4)-C(19)$ $C(5)-C(4)-C(19)$ $C(3)-C(2)-O(1)$ $C(3)-C(2)-O(1)$ $C(3)-C(2)-O(1)$ $C(3)-C(2)-O(1)$ $C(3)-C(2)-O(1)$ $C(2)-O(1)-C(1a)$ $O(1)-C(1a)-C(1)$ $C(1a)-C(1)-C(3)$ $O(1)-C(1a)-C(1)$ $C(1)-C(1a)-C(1)$ $C(1)-C(1a)-C(1)$ $C(1)-C(1a)-C(1)$ $C(1)-C(1a)-C(1)$ $C(1)-C(1a)-C(1)$ $C(1)-C(1a)-C(1)$ $C(1)-C(1)-C(3)$ $O(1)-C(1a)-C(1)$ $C(1)-C(1)-C(3)$ $O(1)-C(1)-C(3)$ $C(1)-C(1)-C(3)$ $C(1)-C(1)-C(3)$ $C(2)-C(3)-C(4)$ $C(3)-C(4)-C(5)$ $C(4)-C(5)-C(6)$ $C(5)-C(6)-C(1)$ $C(1a)-C(1)-C(2)$ $C(1a)-C(1)-C(2)$ $C(1a)-C(1)-C(2)$	116 106 101 119 110 114 113 109 110 112 111 108 107 117 103 116 126 118 109 106 103 106 121 116 120 123 117 120
Some intramolecular no $Br \dots C(1')$	on-bonded	distances	2 22
$Br \cdots C(2')$ $Br \cdots C(1)$	3.52	$C(20)\cdots C(19)$ $C(20)\cdots C(15)$ $C(20)\cdots O(3)$	3.33 3.45 3.24
$Br \cdots C(1a)$	3.80	$C(18) \cdots O(3)$	3.67
$Br \cdots C(10)$ $Br \cdots C(20)$	3.42	$C(18)\cdots O(2)$	3.20
$Br \cdots O(12)$	2.95	$O(2) \cdots O(3)$	2.77 2.76
O(12)····C(17)	2.75	$C(2) \cdots C(18)$	2.74

Table 2 (cont.)

Some least-squares planes of the form Ax + By + Cz = D where A, B and C are the direction cosines of the normal to the plane referred to the real crystallographic axes and D is the perpendicular distance from the origin. The deviations in A of the most relevant atoms from the planes are given in square brackets.

Atoms defini	ing the plan	ie: C(1), C	c(3), C(4), C	C(5), C(1	0)
	A	B	C	Ď	,
	-0.908	-0.361	- 0 ·212	3.13	
[C(1) 0·21,	C(3) -0.0	07, C(4)	-0·10, C(5	0.24.	C(10) = 0.27
C(6) - 0.10	C(9) 0.29), C(18) 1	.06, C(19)	-1.47.	C(20) = 1.89
C(1a) 1.72, 0	C(3) - 0.0'	7, O(3) - 1	.23]	,	- () - 0/,
		, , ,			

Atoms defining the plane: C(1), C(3), C(4), C(5)				
A	В	С	D	
-0.800) -0.510	-0.314	3.99	
[C(1) - 0.01, C(3) 0.	02, C(4) –0-	02, C(5) 0.0	01, C(10) -	-0.68]
Atoms defining the pl	ana: C(5) C			7(10)
Atoms denning the pi	and $C(3); C$	(0), C(7), C(7)	(8), C(9), C	.(10)
A	В	C	D	
-0.834	-0.522	-0.179	3.02	
[C(5) 0.28, C(6) -	0.30, C(7)	0.24, C(8)	-0.16.	C(9) 0.15.
C(10) - 0.21, C(11)	-0.48, Br -	-0.12. C(14) 0.56. C(15) - 1.66
C(18) 1.36, C(19) -	-1.17, C(20	-1.78, C(10) 2.06	C(1) 0.53
C(4) 0.18]	, - (_0	,,	14) 2 00,	C(1) 0.55,
Atoms defining the p	lane: C(8), 6	C(9), C(11),	C(12), C((13), C(14)
A	В	С	D	
-0.795	-0.607	0.005	2.17	
[C(8) −0·35, C(9) 0	-24, C(11) -	-0.17, C(12) 0·17, C(13) -0.25.

C(14) 0.35, Br 0.58, O(12) 0.67, C(17) 0.09, C(15) -1.84, C(16) - 1.82, C(7) - 0.20, C(10) - 0.09, C(20) - 1.57

Atoms defining the plane: C(8), C(13), C(15), C(16) [C(8) 0.01, C(13) - 0.01, C(15) - 0.02, C(16) 0.02, C(14) 0.68,C(7) 0.89, C(9) - 1.42, C(12) - 1.44, Br -3.99, O(12) - 1.98]

Atoms defining the plane: $O(1)$, $C(1)$, $C(1a)$, $C(2)$					
	A	В	C	D	
	-0.227	0.520	-0.823	2.05	
[O(1) -0.02	, C(1) –0	•01, C(1	a) 0.02, C	(2) 0.01,	C(3) 0.30,
O(2) - 0.31, 0	O(3) –0·54	4, C(4) 1.	88, C(10) 1-	12, C(1')	-1.07]

Some torsion angles (°)

9
5
58
80
46
54
4
5
151
177
155
174

for anomalous dispersion. The absolute configuration was determined, and it confirmed previous assignments for this family of compounds (Laing, Pegel & Piacenza, 1973; Laing, Pegel, Piacenza, Waight & Phillips, 1974; Laing, Sommerville, Hanouskova, Pegel, Piacenza, Phillips & Waight, 1972; Laing & Sommerville, 1975; Sommerville & Laing, 1976a,b,c). Final positional and

Fig. 1. View of the molecule showing the numbering system. O(3) is bonded to C(3).

thermal parameters are given in Table 1, with e.s.d.'s in parentheses; bond lengths and angles are in Table 2. Fig. 1 shows the molecular geometry.

Discussion. The results show that the structure deduced from the chemical work is correct. Nor-ring A and the lactone ring E have envelope conformations and are cis fused at C(1) and C(3). Ring E stands above the molecule relative to the mean plane of ring A while ring D lies below the plane; dihedral angles are A/E 74, A/D80°; ring E is twisted clockwise relative to ring C. The phenyl ring at C(1a) is perpendicular to ring E, dihedral angle 88°, and is in close contact with the Br atom at C(11): Br····C(1') 3.48, Br····C(2') 3.52 Å. These close contacts cause torsional and angular strain throughout the molecule, especially along the chain of atoms from C(1a) to Br; the largest effects are seen in the bond angles C(9)-C(11)-Br 114, C(12)-C(11)-Br 108, C(1')-C(1a)-C(1) 121 and C(1')-C(1a)-C(1a)O(1) 106°.

Rings B and C are distorted chairs and most of the angles within ring B have opened, mean value 112°. Rings C and D are distorted, e.g. C(14)-C(13)-C(16) 99°, so that C(15) below ring C is now 3.45 Å from C(20) compared with 3.17-3.26 Å in related compounds (Laing, Pegel & Piacenza, 1973; Laing et al., 1974; Sommerville & Laing, 1976c). The dihedral

angles are B/C 12, C/D 80°. Br and C(17) eclipse O(12) and are almost in the mean plane of ring C; Br...O(12), 2.95, and O(12)...C(17), 2.75 Å, are shorter than in the related molecules (Sommerville & Laing, 1976*a,b,c*). H(9) is no longer perfectly *trans* to C(20), H(9)-C(9)-C(10)-C(20) 155°, emphasizing the large distortion in the molecule, but H(9) is *trans* to H(11), H(9)-C(9)-C(11)-H(11) 174°, consistent with the observed coupling constant of 12.4 Hz.

The eclipsed pentano conformation of ring A allows C(19) and C(20) to move apart [3.33 Å, similar to 3.37 Å in a closely related molecule also with a fivemembered A ring (Laing et al., 1974)]. C(5)-C(10)-C(9) has opened to 112° while C(5)-C(10)-C(1) has closed to 96°. O(3) and methyl C(19) are almost eclipsed and in very close contact (2.77 Å) as are C(2) and methyl C(18), 2.74 Å.

We thank the South African Council for Scientific and Industrial Research for financial support, Dr G. Gafner of the National Physical Research Laboratory, CSIR, for collecting the intensities, and Dr K. H. Pegel for supplying the sample.

References

International Tables for X-ray Crystallography (1962). Vol. III, pp. 202, 203, 206, 216. Birmingham: Kynoch Press.

- LAING, M., PEGEL, K. H. & PIACENZA, L. P. L. (1973). Tetrahedron Lett. pp. 2393-2396.
- LAING, M., PEGEL, K. H., PIACENZA, L. P. L., PHILLIPS, L. & WAIGHT, E. S. (1973). *Tetrahedron Lett.* pp. 3043-3046.
- LAING, M., PEGEL, K. H., PIACENZA, L. P. L., WAIGHT, E. S. & PHILLIPS, L. (1974). J. S. Afr. Chem. Inst. 27, 137-144.
- LAING, M. & SOMMERVILLE, P. (1975). J. S. Afr. Chem. Inst. 28, 279–280.
- LAING, M., SOMMERVILLE, P., HANOUSKOVA, D., PEGEL, K. H., PIACENZA, L. P. L., PHILLIPS, L. & WAIGHT, E. S. (1972). Chem. Commun. pp. 196–198.
- SOMMERVILLE, P. & LAING, M. (1976a). Acta Cryst. B32, 2683–2684.
- SOMMERVILLE, P. & LAING, M. (1976b). Acta Cryst. B32, 2685–2686.
- SOMMERVILLE, P. & LAING, M. (1976c). Acta Cryst. B32, 2687–2688.